Counting classes: thresholds, parity, mods, and fewness

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Classes: Thresholds, Parity, Mods, and Fewness

Counting classes consist of languages deened in terms of the number of accepting computations of nondeterministic polynomial-time Turing machines. Well known examples of counting classes are NP, co-NP, P, and PP. Every counting class is a subset of P #PP1] , the class of languages computable in polynomial time using a single call to an oracle capable of determining the number of accepting paths...

متن کامل

Relativized Counting Classes: Relations among Thresholds, Parity, and Mods

Well known complexity classes such as NP, co-NP, P (PARITY-P), and PP are produced by considering a nondeterministic polynomial time Turing machine N and deening acceptance in terms of the number of accepting paths in N. That is, they are subclasses of P #PP1]. Other interesting classes such as MOD k P and C = P are also subclasses of P #PP1]. Many relations among these classes are unresolved. ...

متن کامل

On Parity Classes

This paper deals with various problems in lattice theory related to the notion of parity. Résumé. Sur les classes de parité. Nous considérons dans cet article divers problèmes de la théorie des réseaux liés à des questions de parité.

متن کامل

Counting Complexity Classes

Shripad Thite May 11, 1998 Abstra t The ounting omplexity lasses are de ned in terms of the number of a epting omputation paths of nondetereministi polynomial-time Turing ma hines. They are, therefore, the ounting versions of de ision problems in NP. We review the properties of well-known ounting lasses like #P, P, GapP, SPP et . We also give an overview of the proof of Toda's theorem that rela...

متن کامل

Quantum Circuits: Fanout, Parity, and Counting

We propose definitions of QAC, the quantum analog of the classical class AC of constant-depth circuits with AND and OR gates of arbitrary fan-in, and QACC[q], where n-ary MODq gates are also allowed. We show that it is possible to make a ‘cat’ state on n qubits in constant depth if and only if we can construct a parity or MOD2 gate in constant depth; therefore, any circuit class that can fan ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1992

ISSN: 0304-3975

DOI: 10.1016/0304-3975(92)90084-s